ESPHome  2024.9.0
ade7880.cpp
Go to the documentation of this file.
1 // This component was developed using knowledge gathered by a number
2 // of people who reverse-engineered the Shelly 3EM:
3 //
4 // @AndreKR on GitHub
5 // Axel (@Axel830 on GitHub)
6 // Marko (@goodkiller on GitHub)
7 // MichaĆ«l Piron (@michaelpiron on GitHub)
8 // Theo Arends (@arendst on GitHub)
9 
10 #include "ade7880.h"
11 #include "ade7880_registers.h"
12 #include "esphome/core/log.h"
13 
14 #include <cinttypes>
15 
16 namespace esphome {
17 namespace ade7880 {
18 
19 static const char *const TAG = "ade7880";
20 
21 void IRAM_ATTR ADE7880Store::gpio_intr(ADE7880Store *arg) { arg->reset_done = true; }
22 
24  if (this->irq0_pin_ != nullptr) {
25  this->irq0_pin_->setup();
26  }
27  this->irq1_pin_->setup();
28  if (this->reset_pin_ != nullptr) {
29  this->reset_pin_->setup();
30  }
31  this->store_.irq1_pin = this->irq1_pin_->to_isr();
32  this->irq1_pin_->attach_interrupt(ADE7880Store::gpio_intr, &this->store_, gpio::INTERRUPT_FALLING_EDGE);
33 
34  // if IRQ1 is already asserted, the cause must be determined
35  if (this->irq1_pin_->digital_read() == 0) {
36  ESP_LOGD(TAG, "IRQ1 found asserted during setup()");
37  auto status1 = read_u32_register16_(STATUS1);
38  if ((status1 & ~STATUS1_RSTDONE) != 0) {
39  // not safe to proceed, must initiate reset
40  ESP_LOGD(TAG, "IRQ1 asserted for !RSTDONE, resetting device");
41  this->reset_device_();
42  return;
43  }
44  if ((status1 & STATUS1_RSTDONE) == STATUS1_RSTDONE) {
45  // safe to proceed, device has just completed reset cycle
46  ESP_LOGD(TAG, "Acknowledging RSTDONE");
47  this->write_u32_register16_(STATUS0, 0xFFFF);
48  this->write_u32_register16_(STATUS1, 0xFFFF);
49  this->init_device_();
50  return;
51  }
52  }
53 
54  this->reset_device_();
55 }
56 
57 void ADE7880::loop() {
58  // check for completion of a reset cycle
59  if (!this->store_.reset_done) {
60  return;
61  }
62 
63  ESP_LOGD(TAG, "Acknowledging RSTDONE");
64  this->write_u32_register16_(STATUS0, 0xFFFF);
65  this->write_u32_register16_(STATUS1, 0xFFFF);
66  this->init_device_();
67  this->store_.reset_done = false;
68  this->store_.reset_pending = false;
69 }
70 
71 template<typename F>
73  if (sensor == nullptr) {
74  return;
75  }
76 
77  float val = this->read_s24zp_register16_(a_register);
78  sensor->publish_state(f(val));
79 }
80 
81 template<typename F>
83  if (sensor == nullptr) {
84  return;
85  }
86 
87  float val = this->read_s16_register16_(a_register);
88  sensor->publish_state(f(val));
89 }
90 
91 template<typename F>
93  if (sensor == nullptr) {
94  return;
95  }
96 
97  float val = this->read_s32_register16_(a_register);
98  sensor->publish_state(f(val));
99 }
100 
102  if (this->store_.reset_pending) {
103  return;
104  }
105 
106  auto start = millis();
107 
108  if (this->channel_n_ != nullptr) {
109  auto *chan = this->channel_n_;
110  this->update_sensor_from_s24zp_register16_(chan->current, NIRMS, [](float val) { return val / 100000.0f; });
111  }
112 
113  if (this->channel_a_ != nullptr) {
114  auto *chan = this->channel_a_;
115  this->update_sensor_from_s24zp_register16_(chan->current, AIRMS, [](float val) { return val / 100000.0f; });
116  this->update_sensor_from_s24zp_register16_(chan->voltage, BVRMS, [](float val) { return val / 10000.0f; });
117  this->update_sensor_from_s24zp_register16_(chan->active_power, AWATT, [](float val) { return val / 100.0f; });
118  this->update_sensor_from_s24zp_register16_(chan->apparent_power, AVA, [](float val) { return val / 100.0f; });
119  this->update_sensor_from_s16_register16_(chan->power_factor, APF,
120  [](float val) { return std::abs(val / -327.68f); });
121  this->update_sensor_from_s32_register16_(chan->forward_active_energy, AFWATTHR, [&chan](float val) {
122  return chan->forward_active_energy_total += val / 14400.0f;
123  });
124  this->update_sensor_from_s32_register16_(chan->reverse_active_energy, AFWATTHR, [&chan](float val) {
125  return chan->reverse_active_energy_total += val / 14400.0f;
126  });
127  }
128 
129  if (this->channel_b_ != nullptr) {
130  auto *chan = this->channel_b_;
131  this->update_sensor_from_s24zp_register16_(chan->current, BIRMS, [](float val) { return val / 100000.0f; });
132  this->update_sensor_from_s24zp_register16_(chan->voltage, BVRMS, [](float val) { return val / 10000.0f; });
133  this->update_sensor_from_s24zp_register16_(chan->active_power, BWATT, [](float val) { return val / 100.0f; });
134  this->update_sensor_from_s24zp_register16_(chan->apparent_power, BVA, [](float val) { return val / 100.0f; });
135  this->update_sensor_from_s16_register16_(chan->power_factor, BPF,
136  [](float val) { return std::abs(val / -327.68f); });
137  this->update_sensor_from_s32_register16_(chan->forward_active_energy, BFWATTHR, [&chan](float val) {
138  return chan->forward_active_energy_total += val / 14400.0f;
139  });
140  this->update_sensor_from_s32_register16_(chan->reverse_active_energy, BFWATTHR, [&chan](float val) {
141  return chan->reverse_active_energy_total += val / 14400.0f;
142  });
143  }
144 
145  if (this->channel_c_ != nullptr) {
146  auto *chan = this->channel_c_;
147  this->update_sensor_from_s24zp_register16_(chan->current, CIRMS, [](float val) { return val / 100000.0f; });
148  this->update_sensor_from_s24zp_register16_(chan->voltage, CVRMS, [](float val) { return val / 10000.0f; });
149  this->update_sensor_from_s24zp_register16_(chan->active_power, CWATT, [](float val) { return val / 100.0f; });
150  this->update_sensor_from_s24zp_register16_(chan->apparent_power, CVA, [](float val) { return val / 100.0f; });
151  this->update_sensor_from_s16_register16_(chan->power_factor, CPF,
152  [](float val) { return std::abs(val / -327.68f); });
153  this->update_sensor_from_s32_register16_(chan->forward_active_energy, CFWATTHR, [&chan](float val) {
154  return chan->forward_active_energy_total += val / 14400.0f;
155  });
156  this->update_sensor_from_s32_register16_(chan->reverse_active_energy, CFWATTHR, [&chan](float val) {
157  return chan->reverse_active_energy_total += val / 14400.0f;
158  });
159  }
160 
161  ESP_LOGD(TAG, "update took %" PRIu32 " ms", millis() - start);
162 }
163 
165  ESP_LOGCONFIG(TAG, "ADE7880:");
166  LOG_PIN(" IRQ0 Pin: ", this->irq0_pin_);
167  LOG_PIN(" IRQ1 Pin: ", this->irq1_pin_);
168  LOG_PIN(" RESET Pin: ", this->reset_pin_);
169  ESP_LOGCONFIG(TAG, " Frequency: %.0f Hz", this->frequency_);
170 
171  if (this->channel_a_ != nullptr) {
172  ESP_LOGCONFIG(TAG, " Phase A:");
173  LOG_SENSOR(" ", "Current", this->channel_a_->current);
174  LOG_SENSOR(" ", "Voltage", this->channel_a_->voltage);
175  LOG_SENSOR(" ", "Active Power", this->channel_a_->active_power);
176  LOG_SENSOR(" ", "Apparent Power", this->channel_a_->apparent_power);
177  LOG_SENSOR(" ", "Power Factor", this->channel_a_->power_factor);
178  LOG_SENSOR(" ", "Forward Active Energy", this->channel_a_->forward_active_energy);
179  LOG_SENSOR(" ", "Reverse Active Energy", this->channel_a_->reverse_active_energy);
180  ESP_LOGCONFIG(TAG, " Calibration:");
181  ESP_LOGCONFIG(TAG, " Current: %" PRId32, this->channel_a_->current_gain_calibration);
182  ESP_LOGCONFIG(TAG, " Voltage: %" PRId32, this->channel_a_->voltage_gain_calibration);
183  ESP_LOGCONFIG(TAG, " Power: %" PRId32, this->channel_a_->power_gain_calibration);
184  ESP_LOGCONFIG(TAG, " Phase Angle: %u", this->channel_a_->phase_angle_calibration);
185  }
186 
187  if (this->channel_b_ != nullptr) {
188  ESP_LOGCONFIG(TAG, " Phase B:");
189  LOG_SENSOR(" ", "Current", this->channel_b_->current);
190  LOG_SENSOR(" ", "Voltage", this->channel_b_->voltage);
191  LOG_SENSOR(" ", "Active Power", this->channel_b_->active_power);
192  LOG_SENSOR(" ", "Apparent Power", this->channel_b_->apparent_power);
193  LOG_SENSOR(" ", "Power Factor", this->channel_b_->power_factor);
194  LOG_SENSOR(" ", "Forward Active Energy", this->channel_b_->forward_active_energy);
195  LOG_SENSOR(" ", "Reverse Active Energy", this->channel_b_->reverse_active_energy);
196  ESP_LOGCONFIG(TAG, " Calibration:");
197  ESP_LOGCONFIG(TAG, " Current: %" PRId32, this->channel_b_->current_gain_calibration);
198  ESP_LOGCONFIG(TAG, " Voltage: %" PRId32, this->channel_b_->voltage_gain_calibration);
199  ESP_LOGCONFIG(TAG, " Power: %" PRId32, this->channel_b_->power_gain_calibration);
200  ESP_LOGCONFIG(TAG, " Phase Angle: %u", this->channel_b_->phase_angle_calibration);
201  }
202 
203  if (this->channel_c_ != nullptr) {
204  ESP_LOGCONFIG(TAG, " Phase C:");
205  LOG_SENSOR(" ", "Current", this->channel_c_->current);
206  LOG_SENSOR(" ", "Voltage", this->channel_c_->voltage);
207  LOG_SENSOR(" ", "Active Power", this->channel_c_->active_power);
208  LOG_SENSOR(" ", "Apparent Power", this->channel_c_->apparent_power);
209  LOG_SENSOR(" ", "Power Factor", this->channel_c_->power_factor);
210  LOG_SENSOR(" ", "Forward Active Energy", this->channel_c_->forward_active_energy);
211  LOG_SENSOR(" ", "Reverse Active Energy", this->channel_c_->reverse_active_energy);
212  ESP_LOGCONFIG(TAG, " Calibration:");
213  ESP_LOGCONFIG(TAG, " Current: %" PRId32, this->channel_c_->current_gain_calibration);
214  ESP_LOGCONFIG(TAG, " Voltage: %" PRId32, this->channel_c_->voltage_gain_calibration);
215  ESP_LOGCONFIG(TAG, " Power: %" PRId32, this->channel_c_->power_gain_calibration);
216  ESP_LOGCONFIG(TAG, " Phase Angle: %u", this->channel_c_->phase_angle_calibration);
217  }
218 
219  if (this->channel_n_ != nullptr) {
220  ESP_LOGCONFIG(TAG, " Neutral:");
221  LOG_SENSOR(" ", "Current", this->channel_n_->current);
222  ESP_LOGCONFIG(TAG, " Calibration:");
223  ESP_LOGCONFIG(TAG, " Current: %" PRId32, this->channel_n_->current_gain_calibration);
224  }
225 
226  LOG_I2C_DEVICE(this);
227  LOG_UPDATE_INTERVAL(this);
228 }
229 
230 void ADE7880::calibrate_s10zp_reading_(uint16_t a_register, int16_t calibration) {
231  if (calibration == 0) {
232  return;
233  }
234 
235  this->write_s10zp_register16_(a_register, calibration);
236 }
237 
238 void ADE7880::calibrate_s24zpse_reading_(uint16_t a_register, int32_t calibration) {
239  if (calibration == 0) {
240  return;
241  }
242 
243  this->write_s24zpse_register16_(a_register, calibration);
244 }
245 
247  this->write_u8_register16_(CONFIG2, CONFIG2_I2C_LOCK);
248 
249  this->write_u16_register16_(GAIN, 0);
250 
251  if (this->frequency_ > 55) {
252  this->write_u16_register16_(COMPMODE, COMPMODE_DEFAULT | COMPMODE_SELFREQ);
253  }
254 
255  if (this->channel_n_ != nullptr) {
256  this->calibrate_s24zpse_reading_(NIGAIN, this->channel_n_->current_gain_calibration);
257  }
258 
259  if (this->channel_a_ != nullptr) {
260  this->calibrate_s24zpse_reading_(AIGAIN, this->channel_a_->current_gain_calibration);
261  this->calibrate_s24zpse_reading_(AVGAIN, this->channel_a_->voltage_gain_calibration);
262  this->calibrate_s24zpse_reading_(APGAIN, this->channel_a_->power_gain_calibration);
263  this->calibrate_s10zp_reading_(APHCAL, this->channel_a_->phase_angle_calibration);
264  }
265 
266  if (this->channel_b_ != nullptr) {
267  this->calibrate_s24zpse_reading_(BIGAIN, this->channel_b_->current_gain_calibration);
268  this->calibrate_s24zpse_reading_(BVGAIN, this->channel_b_->voltage_gain_calibration);
269  this->calibrate_s24zpse_reading_(BPGAIN, this->channel_b_->power_gain_calibration);
270  this->calibrate_s10zp_reading_(BPHCAL, this->channel_b_->phase_angle_calibration);
271  }
272 
273  if (this->channel_c_ != nullptr) {
274  this->calibrate_s24zpse_reading_(CIGAIN, this->channel_c_->current_gain_calibration);
275  this->calibrate_s24zpse_reading_(CVGAIN, this->channel_c_->voltage_gain_calibration);
276  this->calibrate_s24zpse_reading_(CPGAIN, this->channel_c_->power_gain_calibration);
277  this->calibrate_s10zp_reading_(CPHCAL, this->channel_c_->phase_angle_calibration);
278  }
279 
280  // write three default values to data memory RAM to flush the I2C write queue
281  this->write_s32_register16_(VLEVEL, 0);
282  this->write_s32_register16_(VLEVEL, 0);
283  this->write_s32_register16_(VLEVEL, 0);
284 
285  this->write_u8_register16_(DSPWP_SEL, DSPWP_SEL_SET);
286  this->write_u8_register16_(DSPWP_SET, DSPWP_SET_RO);
287  this->write_u16_register16_(RUN, RUN_ENABLE);
288 }
289 
291  if (this->reset_pin_ != nullptr) {
292  ESP_LOGD(TAG, "Reset device using RESET pin");
293  this->reset_pin_->digital_write(false);
294  delay(1);
295  this->reset_pin_->digital_write(true);
296  } else {
297  ESP_LOGD(TAG, "Reset device using SWRST command");
298  this->write_u16_register16_(CONFIG, CONFIG_SWRST);
299  }
300  this->store_.reset_pending = true;
301 }
302 
303 } // namespace ade7880
304 } // namespace esphome
void update() override
Definition: ade7880.cpp:101
constexpr uint16_t DSPWP_SEL
constexpr uint16_t BVGAIN
constexpr uint16_t CIGAIN
constexpr uint16_t CONFIG2
constexpr uint16_t STATUS0
constexpr uint16_t CONFIG
constexpr uint16_t AVGAIN
constexpr uint16_t BIRMS
constexpr uint16_t CVGAIN
constexpr uint16_t CPHCAL
mopeka_std_values val[4]
constexpr uint16_t BPF
constexpr uint16_t CONFIG_SWRST
constexpr uint16_t COMPMODE
constexpr uint16_t BVRMS
constexpr uint16_t APGAIN
uint32_t IRAM_ATTR HOT millis()
Definition: core.cpp:25
constexpr uint16_t CFWATTHR
constexpr uint16_t STATUS1
constexpr uint16_t BIGAIN
constexpr uint16_t CPGAIN
constexpr uint16_t RUN
static void gpio_intr(ADE7880Store *arg)
Definition: ade7880.cpp:21
constexpr uint16_t BFWATTHR
constexpr uint16_t COMPMODE_DEFAULT
constexpr uint16_t DSPWP_SET
constexpr uint16_t CVRMS
void publish_state(float state)
Publish a new state to the front-end.
Definition: sensor.cpp:39
void update_sensor_from_s32_register16_(sensor::Sensor *sensor, uint16_t a_register, F &&f)
Definition: ade7880.cpp:92
constexpr uint16_t CIRMS
constexpr uint16_t APF
constexpr uint16_t NIRMS
constexpr uint8_t CONFIG2_I2C_LOCK
constexpr uint16_t AWATT
constexpr uint16_t RUN_ENABLE
void update_sensor_from_s16_register16_(sensor::Sensor *sensor, uint16_t a_register, F &&f)
Definition: ade7880.cpp:82
constexpr uint8_t DSPWP_SET_RO
constexpr uint16_t GAIN
constexpr uint8_t DSPWP_SEL_SET
void update_sensor_from_s24zp_register16_(sensor::Sensor *sensor, uint16_t a_register, F &&f)
Definition: ade7880.cpp:72
constexpr uint16_t BPHCAL
constexpr uint16_t NIGAIN
constexpr uint16_t AIGAIN
constexpr uint16_t AVA
constexpr uint16_t COMPMODE_SELFREQ
constexpr uint32_t STATUS1_RSTDONE
constexpr uint16_t BVA
void dump_config() override
Definition: ade7880.cpp:164
void loop() override
Definition: ade7880.cpp:57
void setup() override
Definition: ade7880.cpp:23
void calibrate_s10zp_reading_(uint16_t a_register, int16_t calibration)
Definition: ade7880.cpp:230
constexpr uint16_t AIRMS
constexpr uint16_t APHCAL
constexpr uint16_t VLEVEL
Implementation of SPI Controller mode.
Definition: a01nyub.cpp:7
void calibrate_s24zpse_reading_(uint16_t a_register, int32_t calibration)
Definition: ade7880.cpp:238
constexpr uint16_t CWATT
constexpr uint16_t CVA
Base-class for all sensors.
Definition: sensor.h:57
constexpr uint16_t AFWATTHR
constexpr uint16_t BPGAIN
constexpr uint16_t BWATT
esphome::sensor::Sensor * sensor
Definition: statsd.h:37
constexpr uint16_t CPF
volatile bool reset_done
Definition: ade7880.h:62
void IRAM_ATTR HOT delay(uint32_t ms)
Definition: core.cpp:26